Computation of geographic variables for air pollution prediction models in South Korea
نویسندگان
چکیده
Recent cohort studies have relied on exposure prediction models to estimate individuallevel air pollution concentrations because individual air pollution measurements are not available for cohort locations. For such prediction models, geographic variables related to pollution sources are important inputs. We demonstrated the computation process of geographic variables mostly recorded in 2010 at regulatory air pollution monitoring sites in South Korea. On the basis of previous studies, we finalized a list of 313 geographic variables related to air pollution sources in eight categories including traffic, demographic characteristics, land use, transportation facilities, physical geography, emissions, vegetation, and altitude. We then obtained data from different sources such as the Statistics Geographic Information Service and Korean Transport Database. After integrating all available data to a single database by matching coordinate systems and converting non-spatial data to spatial data, we computed geographic variables at 294 regulatory monitoring sites in South Korea. The data integration and variable computation were performed by using ArcGIS version 10.2 (ESRI Inc., Redlands, CA, USA). For traffic, we computed the distances to the nearest roads and the sums of road lengths within different sizes of circular buffers. In addition, we calculated the numbers of residents, households, housing buildings, companies, and employees within the buffers. The percentages of areas for different types of land use compared to total areas were calculated within the buffers. For transportation facilities and physical geography, we computed the distances to the closest public transportation depots and the boundary lines. The vegetation index and altitude were estimated at a given location by using satellite data. The summary statistics of geographic variables in Seoul across monitoring sites showed different patterns between urban background and urban roadside sites. This study provided practical knowledge on the computation process of geographic variables in South Korea, which will improve air pollution prediction models and contribute to subsequent health analyses.
منابع مشابه
Status and preparation of prediction models for ozone as an air pollutant in Shiraz, Iran
In the present study, air quality analyses for ozone (O3) were conducted in Shiraz, a city in the south of Iran. The measurements were taken from 2011 through 2012 in two different locations to prepare average data in the city. The average concentrations were calculated for every 24 hours, each month and each season. Results showed that the highest concentration of ozone occurs generally in the...
متن کاملCarbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine
Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily C...
متن کاملAccuracy comparison of Elamn and Jordan artificial neural networks for air particular matter concentration (PM 10) prediction using MODIS satellite images, a case study of Ahvaz.
Due to the complexity of air pollution action, artificial intelligence models specifically, neural networks are utilized to simulate air pollution. So far, numerous artificial neural network models have been used to estimate the concentration of atmospheric PMs. These models have had different accuracies that scholars are constantly exceed their efficiency using numerous parameters. The current...
متن کاملCarbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine
Air quality prediction is highly important in view of the health impacts caused by exposure to air pollutants in urban air. This work has presented a model based on support vector machine (SVM) technique to predict daily average carbon monoxide (CO) concentrations in the atmosphere of Tehran. Two types of SVM regression models, i.e. -SVM and -SVM techniques, were used to predict average daily C...
متن کاملStatus of PM10 as an air pollutant and its prediction using meteorological parameters in Ahvaz, Iran
In the present study, air quality analyses for particulate matters (PM10) were conductedin Ahvaz, a city in the south of Iran. The measurements were taken from 2009 through2010 in two different locations to prepare average data for the city. The averageconcentrations were calculated for every 24 hours, and each month and each season whichshowed the highest concentration of PM10 in the morning w...
متن کامل